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Molecular states of atoms. II 
Orbital wave functions 
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Orbital energy parameters, previously obtained from atomic valence state 
energies, are used in calculating approximate wave functions for their orbitals. 
The radial factors of these wave functions are expressed as linear combinations 
of three Gaussian type orbitals with selected exponents, the coefficients being 
determined by normalisation and reproduction of the kinetic energy and 
interelectron repulsion parameters. Wave functions of universal form are 
obtained for the non-transition elements up to xenon. Each calculated s orbital 
wave function (except ls)  has a radial node, as is appropriate if there is a p 
orbital in the same shell with none. 
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1. Introduction 

Semiempirical molecular orbital methods can be applied effectively in electronic 
structure calculations if they employ physically realistic interaction parameters 
and basis functions. To a lesser extent, minimal basis set ab initio calculations 
are not insensitive to the choice of  basis functions [1, 2] so that comparison of 
their predictions with experiment can be required to determine a basis set of 
optimum general utility. More attention has been given, in semiempirical work, 
to the selection of  the orbital interaction parameters than to the detailed form 
of  the basis orbitals themselves; minimal valence bases of  Slater type orbitals 
(STO's) predominate with exponents obtained from different prescriptions 
[3, 4, 5], possibly employing an expansion of  each STO in Gaussian type orbitals 
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(GTOs) [6] to facilitate computation. A survey of, e.g., interelectron repulsion 
parameters would show that typically [7, 8] the values calculated from the STO 
basis can deviate significantly from those actually used. Since most semiempirical 
calculations contain parameters adjusted so as to optimise the comparison of 
their predictions with experiment, such discrepancies may not be of great sig- 
nificance in practice. None the less, we here investigate what form the wave 
functions of the basis orbitals could take if they are to be consistent with the 
values of the interaction parameters assigned to the orbitals. 

In a previous paper [9] we obtained orbital energy parameters for atoms from 
an analysis of valence state (VS) energies. These energies were related, using 
some justified approximations, to the orbital occupation numbers characterising 
the configurations of atom A by [10] 

E vs = CA + n~U~ + nvU ~, + [�89 - 1) +~n~np]g~ + [~n~np +lnv (n  p - 1) ]gpp 
(1) 

This equation contains a configuration-independent core energy parameter CA. 
The s orbital has parameters Us (core-valence interaction energy) and gss (inter- 
electron repulsion between electrons in the s orbital). Up and gpp apply similarly 
to the p subshell. Values for these parameters were obtained by fitting the 
expression (1) to Hinze's valence state promotion energies [11] for each atom; 
each valence state has integer subshell occupation numbers ns and np. 

In order to employ these parameters in a molecular orbital calculation, it was 
shown in [9] that, in the theoretical limit of atom A being removed to a very 
large distance from the other atoms of a molecule, a single determinant description 
of the molecular electronic structure enables us to identify the energy of A in 
this "molecular state" (MS) as 

E ~  s = CA+~, n~H~a +ly ,  ~ n~n~,g~,+l~ nE~g~a (2) 
a a a ' ~ a  a 

The value of the configuration-independent parameter CA depends on the zero 
of the chosen energy scale, in our work the energy of the spectroscopic ground 
state of the neutral atom A. The Fock operator F A associated with E ~  s is 
independent of CA and its diagonal matrix elements are [9] 

FaA A = H ~ +  ~, na,g~,+ln~g~ (3) 
a ' ~ a  

with H A the operator representing the kinetic energy and core potential energy. 
The approximations in (1) to (3) are [9] 

gx~ = gxy = gpp (4) 
3 (5) 

gsp  = ~gss  --b 5gpp  

which reflect some limitations in the VS data [9]. Therefore Fock matrix elements 
can be set up using Ha A = Ua and values for g~ and gpv from the VS data. 

We were also able to provide a prescription for identifying values of the com- 
ponents of 

H,Aa = Taa - -  ZAAa (6) 
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where Taa is the kinetic energy of orbital a, ZA the net positive charge of the 
core, and --ZAAa the attractive interaction energy between the core and an electron 
in orbital a. Our prescription was based on the virial theorem [9] and provides 
physically acceptable values of Ta, and Aa. The motivation for performing the 
decomposition in (6) was the requirement, in some semi-empirical molecular 
orbital methods, of  values of  T,, to enable generation of off-diagonal kinetic 
energy matrix elements. 

Values of  T~,  Aa and g~a were tabulated in [9]. For each atom T~ and Aa are 
defined for a reference MS with equal occupation of all the valence shell orbitals. 
We now investigate what form the wave functions of the orbitals this reference 
state take, using the constraint that the calculated orbital interaction parameters 
should agree with those obtained from the VS data. 

An a priori derivation of  the wave functions of the atomic orbitals requires a 
solution of  the many-electron Schrrdinger equation for the atom. This is straight- 
forward at the single determinant level for spin zero atomic ground states. Even 
if correlation effects are ignored for such states, there is still the problem that 
the majority of isolated atoms have ground states with non-zero spin. A valence 
state calculation would use a single Slater determinant atomic wave function for 
all atoms, spin-averaging the interactions between subshells where necessary, but 
even so it would be unlikely that the calculated interaction parameters would 
agree with those obtained from the VS data. 

2. Method 

We have calculated orbital wave functions of  the usual form 

tP.l,~(r, O, ~) = R.t(r) Ylm( O, ~) (7) 

where the radial factor is a linear combination 

3 

grit(r) = ~ ciG~1)(r) (8) 
i = 1  

of normalised GTOs with coefficients to be determined. Y~,, denotes a normalised 
spherical harmonic for subshell l, and G~l)(r) denotes the radial factor of a 
normalised GTO. Following Stewart [6], we use 

Gl~ = 27/4~T-1/40t 3/4 exp (--otir 2) (9) 

to fit s orbitals, and 

Gl,)(r) -,/2 11/4__--1/4~5/4_ =3 2 .,, t.~ . e x p ( - a l r  2) (10) 

to fit p orbitals. 

We require that each wave function On~,. be normalised and also have expectation 
values of  kinetic energy and interelectron repulsion equal to the VS values T.a 
and gaa respectively. The VS core-valence interaction parameter Aa in (6) is not 
used because we have no detailed knowledge of the effective core potential for 
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an electron in orbital a and hence cannOt calculate a value of Aa from qJ,lm. 
Instead Aa will prove useful in selecting the appropriate wave function (see 
below). 

The normalisation condition is expressed as 

3 
Y. c~Sqcj = 1 (11) 
U 

with &i the overlap between two normalised GTOs i and j with wave functions 
of form Gi(r) Y~,,(O, ~). Similarly, the kinetic energy constraint takes the form 

3 

E c,T~jcj = T~ (12) 
U 

The matrices S and T are defined unambiguously. Some care, however, is required 
in deciding on the form of the calculated two-electron repulsion integrals. For 
the s subshell there is no problem, and we use 

3 

%, = X C, Cj(&S~Iskst)ckcl = &* (13) 
Ukt 

employing the usual notation for the two-electron repulsion integral involving 
four GTOs. For the p subshell there is only one, average, VS value gpp [9]. It 
might appear straightforward to identify this as (xx ]xx) A, the two-electron repul- 
sion integral for a single p orbital of A, but that would result in inconsistencies 
once the diagonal matrix elements for this orbital of the Fock operator are 
considered. From [9] 

FxA a = Hxx + n, (xx I SS) A "Jr- 1Flx(XX [XX) A "Jc ( Fly "~ nz ) (xx lyy )  A ( 1 4 )  

As discussed in [9], one requirement on any approximate form of Fock matrix 
elements is that rotational invariance is ensured under any orthogonal transforma- 
tion of the orbitals of a subshell [7]. The above form will preserve this invariance 
only for transformations between molecular states with nx =ny = nz = np/3. In 
general an averaged quality ypp should replace the two-electron repulsion integrals 
in (14) [9]. The choice of ypp should reproduce Fx A in (14) over a realistic range 
of occupation numbers. We have therefore taken 

3% = �89 a + 4(xxlyy)  a (1 S) 

so that the constraint of the reproduction of gpp from the VS data becomes 

3 
~'pp = Z e,c~{k(x,xjlxkx,) + 4(x,xj ly,,y,)}ckc, = gpp (16) 

ijkl 

This choice of  ypp will reproduce Fxx in (14) for states with nx =ny = nz. Such 
states include the reference MS defined in [9]. This would not have been the 
case if 

%,, = �89 a +](xx  lyy) A (17) 
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had been used instead. That form is appropriate for averaging the interelectron 
repulsion between two electrons in different subshells. 

The three simultaneous Eqs. (11), (12), and (13) or (16), can be solved for the 
coefficients cl, c2 and c3, once the exponents of the GTOs have been fixed. Clearly 
a l ,  a2, and ~3 should span a range that gives the expansion in (7) the flexibility 
to reproduce the radial factor Rnt(r) over a wide range of radii. Our exponent 
selection was influenced by the form of the kinetic energy and interelectron 
repulsion integrals for a single GTO, which indicated that the GTO with largest 

Table 1. Calculated s orbital radial factors as expansions of  three normalised s GTOs for all 
non-transit ion elements with atomic number  ~<54. Exponents  are in atomic units, the expectation 
value (r -1) is in eV 

at  a2 a3 Cl c2 c3 ( r - t )  

H 0.11150 0.55749 1.9087 0.86368 0.03539 0.25379 22.277 
He 0.60045 3.0023 7.2561 0.77907 0.28177 0.02779 45.732 

Li 0.028205 0.28928 0.67869 1.13689 -0.82299 0.27166 6.061 
Be 0.052827 0.44191 1.9108 1.15917 -0.92413 0.27420 8.671 
B 0.11390 0.98615 3.8460 1.15468 -0.90977 0.26865 12.644 
C 0.18680 1.6309 6.2027 1.15363 -0.90586 0.26728 16.169 
N 0.19757 1.4794 8.9183 1.17582 -0.95596 0.29000 17.454 
O 0.43390 4.0463 12.630 1.14593 -0.86989 0.25796 24.386 
F 0.25999 1.7064 15.279 1.20158 -0.97834 0.30563 21.939 
Ne 0.34644 2.2278 21.206 1.20630 -0.98100 0.30788 25.787 

Na 0.029453 0.31574 0.64871 1.13395 -0.82558 0.30720 6.086 
Mg 0.048105 0.40580 1.7111 1.15805 -0.92088 0.27287 8.259 
A1 0.071756 0.55078 3.0828 1.17178 -0.95031 0.28675 10.396 
Si 0.16059 1.4533 4.9637 1.14932 -0.88732 0.26167 14.908 
P 0.25959 2.4891 7.1466 1.14297 -0.85320 0.25655 18.758 
S 0.14084 0.94817 7.8651 1.19599 -0.97477 0.30277 15.808 
CI 0.12370 0.69044 10.052 1.24599 -0.99400 0.32270 17.856 
Ar 0.21041 1.3098 13.744 1.21429 -0.98487 0.31139 20.722 

K 0.011240 0.087585 0.46862 1.16941 -0.94653 0.28471 4.089 
Ca 0.044806 0.44318 1.1593 1.13996 -0.83620 0.25923 7.731 
Ga 0.033217 0.17982 2.8691 1.25633 -0.99491 0.32574 9.588 
Ge 0.27194 3.0342 5.5292 1.13206 -0.85621 0.36735 18.186 
As 0.15119 1.1742 6.3451 1.16992 -0.94739 0.28517 15.015 
Se 0.24900 2.1563 8.4049 1.15466 -0.90968 0.26862 18.695 
Br 0.21843 1.6036 10.258 1.17923 -0.96006 0.29250 18.550 
Kr 0.16579 0.95967 12.526 1.23453 -0.99178 0.31901 19.842 

Rb 0.023596 0.25268 0.52087 1.13401 -0.82517 0.30598 5.450 
Sr 0.038510 0.35966 1.1175 1.14576 -0.86897 0.25782 7.263 
In 0.065580 0.47983 3.1008 1.17982 -0.96073 0.29293 10.184 
Sn 0.12429 1.0388 4.5037 1.15929 -0.92447 0.27434 13.303 
Sb 0.25794 2.5360 6.7543 1.14051 -0.83921 0.25824 18.582 
Te 0.29421 2.7881 8.2928 1.14420 -0.86021 0.25681 20.020 
I 0.12502 0.75741 8.6223 1.22145 -0.98776 0.31428 16.414 
Xe 0.10819 0.54987 10.603 1.26881 -0.77991 0.34717 20.255 
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exponent would dominate the kinetic energy, while the interelectron repulsion 
would be more sensitive than the kinetic energy to the GTOs with smaller 
exponents. The equations to be solved are non-linear in the unknown coefficients, 
so the number of solutions can vary. We decided that it would be desirable for 
the GTO exponents to be related explicitly to the VS data so that the orbital 
wave functions might have a universal, numerically similar, form for different 
elements. The requirement of  universality aided the selection of  a solution from 
those obtained and is helpful in identifying physical trends in the form of the 
wave function for sequences of elements. 

Some exploratory work indicated that, within quite narrow limits, such a method 
of exponent selection could be set up. For each subshell the VS values of  kinetic 

Table 2. Calculated p orbital radial factors as expansions of three normalised GTOs for the non- 
transition elements with atomic number 3 -< Z-< 54, except for K, Ca, Sr (see text). Units are as in 
Table 1 

cq c~ 2 c~3 cl c2 c3 (r -1) 

Li 0.0046578 0.028897 0.15559 0.51054 0.53063 0.29018 5.049 
Be 0.015435 0.099418 0.47831 0.50473 0.55187 0.25837 8.983 
B 0.031218 0.19350 1.0448 0.51065 0.53020 0.29087 13.078 
C 0.043496 0.24686 1.7361 0.51508 0.50419 0.34121 16.187 
N 0.070238 0.41412 2.5979 0.51452 0.51228 0.32260 20.168 
O 0.066273 0.33248 3.3855 0.50582 0.49869 0.38128 21.192 
F 0.11997 0.68002 4.8007 0.51507 0.50398 0.34177 26.900 
Ne 0.23005 1.4866 7.0836 0.50409 0.55409 0.25523 34.609 

Na 0.0033735 0.019401 0.13114 0.51510 0.50654 0.33520 4.478 
Mg 0.0073889 0.035825 0.40412 0.50082 0.50086 0.38878 7.187 
AI 0.016440 0.084876 0.79299 0.50928 0.49786 0.37400 10.417 
Si 0.017678 0.073195 1.3258 0.46794 0.52174 0.41230 11.927 
P 0.031471 0.13974 2.0521 0.48420 0.51085 0.40369 15.425 
S 0.034923 0.15056 2.4158 0.47761 0.51521 0.40761 16.464 
C1 0.055051 0.25306 3.3496 0.49132 0.50630 0.39846 20.090 
Ar 0.086279 0.42360 4.6020 0.50276 0.49993 0.38615 24.419 

K 
Ca 
Ga 0.023317 0.14932 0.73095 0.50581 0.54807 0.26381 11.081 
Ge 0.014863 0.054401 1.1464 0.43522 0.54384 0.42301 11.571 
As 0.036606 0.17774 1.9965 0.50104 0.50075 0.38849 15.986 
Se 0.030276 0.12123 2.4279 0.45946 0.52751 0.41569 15.846 
Br 0.043301 0.18257 3.1317 0.47237 0.51874 0.41028 18.516 
Kr 0.068850 0.31938 4.1136 0.49308 0.50522 0.39696 22.376 

Rb 0.0014235 0.0053155 0.13127 0.44074 0.54016 0.42157 3.548 
Sr 
In 0.015039 0.076042 0.75631 0.50683 0.49836 0.37938 10.059 
Sn 0.010772 0.037421 1.1477 0.42064 0.55344 0.42637 10.099 
Sb 0.024955 0.10313 1.8786 0.46748 0.52206 0.41250 14.183 
Te 0.023425 0.085144 2.2797 0.43329 0.54513 0.42349 14.575 
I 0.027104 0.10055 2.5319 0.43896 0.54135 0.42205 15.528 
Xe 0.052557 0.22831 3.5808 0.47935 0.51405 0.40665 20.129 
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energy and interelectron repulsion were expressed in atomic units as t and g 
respectively. Then, for hydrogen and helium, we used 

t x l : l g  2, O~2=50~1, O~3=5/ 

For s orbitals of the remaining elements, we used 

eel = gZ, a2oz  g t  -1/2 a 3 = 5 t  

and for the p orbitals 

eel = 0 .35g  2 , ce2oCgt -a/2 , a 3 = 2 t  

The actual values taken for each element are given in Tables 1 and 2. 

3. Results 

Solution of  the set of non-linear simultaneous equations (11), (12), and (13) or 
(16) were calculated using the NAG library routine C05NBF [12]. All computa- 
tion was in double precision arithmetic (18 significant figures) on the UCW 
Honeywell computer. For hydrogen and helium s orbitals, and most p orbitals, 
two solutions were found. At least two, and more frequently four, solutions were 
found for s orl3itals. 

We found no solutions for the p orbitals of potassium, calcium and strontium, 
even after searching through many selections of GTO exponents. This suggests 
that their VS data are incompatible with the GTO expansion (8). The values of 
gp, for these elements are unexpectedly large. The relative unreliability of the 
VS data for these elements was noted in [9], and there appeared therefore to be 
little point in further effort to find solutions consistent with them. 

The solutions selected as radial factors for the orbital wave functions are presented 
in the tables, as coefficients and exponents of  normalised GTOs in (8). Also given 
are the expectation values An = (r-1)~ calculated from these solutions. The VS 
core-valence interaction parameter An should be greater than An for s orbitals, 
due to significant penetration of the core by these orbitals. For p orbitals we 
anticipate A n -  An because penetration effects should be smaller, although for 
small Z A  they will be more noticeable because the core is relatively larger with 
respect to the valence electron distribution. The calculated values of  (r-l)a for 
each computed solution assisted in the identification of the appropriate solution 
for each subshell. The other solutions either have (r-1)a > An or were not found 
for many of  the elements considered. 

The radial factors of these orbital wave functions for some lighter atoms are 
plotted in the figure. The nodeless radial factors (s for hydrogen, p for the other 
elements) are not dissimilar to the corresponding STO, although for p orbitals 
they diminish to zero much more slowly than the STO at larger radii. The 
calculated hydrogen wave function is similar in magnitude to, but somewhat 
more diffuse than, the STO. The difference is not as marked as might be expected 
for an orbital with kinetic energy of 10.4 eV [9] as opposed to the STO value of 
13.6 eV, and this may justify to some extent the utility of the hydrogen STO in 
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Fig. 1. Radial factors of the orbital wave functions calculated for hydrogen, carbon, fluorine and 
sodium. Dotted lines indicate s orbitals, solid lines p orbitals, and the dashed lines STOs with Slater's 
exponents for comparison. The plot for each element has, for clarity, been scaled to give the same 
STO peak height. The fluorine 2s orbital wave function at the origin has about twice the amplitude 
of the STO peak 

semi-empirical work. The other s orbitals are markedly different from STO form, 
having a radial node roughly where the STO peaks. This is quite consistent, for 
a first row atom, with the node required in a 2s wave function to make it orthogonal 
to the I s  core wave function. Because we consider only the outer shell electrons 
explicitly we expect to find their p orbitals lacking radial nodes in all rows of 
the Periodic Table and therefore, by analogy with first row elements, to find this 
radial node in the s orbital wave function. 

For r ~  0 the p orbital vanishes by construction, while the calculated wave 
functions for the s orbital can not be expected to be very realistic close to the 
nucleus because the weighting in (8) of  the most compact  GTO, which dominates 
the wave function's variation there, is determined mainly by the need to reproduce 
the kinetic energy of  the orbital correctly rather than mimic the detailed structure 
of  a Har t ree-Fock  s orbital near the nucleus. 

4. Conclusion 

Atomic orbital wave functions have been obtained which are consistent with 
Orbital energy parameters derived from experimental data. We envisage two areas 
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of  useful appl icat ion for  them. The first is in the development  o f  semi-empirical 
and pseudopotent ia l  methods  (these wave functions can be regarded as approxi-  
mate eigenfunctions o f  an experimentally derived pseudopotent ia l ,  for which the 
detailed form of  the eigenfunctions near the nucleus is not  expected to be realistic), 
where the above consistency permits the universal form of  the wave functions to 
be considered explicitly in systematic investigation o f  suitable approximat ions  
to multi-centre matrix elements. Relatively little work of  this type has been done,  
in contrast  to the effort expanded  in optimising the parameters  o f  semiempirical  
methods  which use s tandard  bases. The second area is improvement  in the 
predict ion o f  valence electron densities in molecular  orbital calculations, for the 
s wave funct ions in part icular  are more realistic than nodeless STO's  and diminish 
more  rapidly with increasing radius than their par tner  p wave functions,  correctly 
reflecting the difference between the s and p orbital energies. We intend to 
investigate the utility o f  these basis functions in approximate  molecular  orbital 
calculations. 
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